If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-2x-35=0
a = 48; b = -2; c = -35;
Δ = b2-4ac
Δ = -22-4·48·(-35)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-82}{2*48}=\frac{-80}{96} =-5/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+82}{2*48}=\frac{84}{96} =7/8 $
| 7x+2(x-2=-(2x-2-(2x+4) | | 2/4x-6=3 | | 40+25x=215 | | 2/5x=18/35 | | 3/11=13/y | | 6t-4t+2t=16 | | x/25=28/20 | | 6y+14=121 | | 18p+4p+2p-10p-8p=12 | | 5w=9-0 | | 4x∗22+10x-4+x+11=180 | | 3(x+2)=-5-2(x-2) | | 12x-4x=8 | | x^2=-7/13 | | 3(x+5)=2x19 | | -3(w-3)=2(w+2) | | 3^2-x+3^3-x=12 | | 10−2r=4 | | 15-10*50=x | | 15+10x=50 | | 5m-1(6m×9)=1 | | (3/x)+2=4/5x | | 4x⋅22+10x-4+x+11=180 | | 24+10x+x^2=24 | | 4/3(-9x+12)-x=x-9 | | 11a-8a=6 | | 4x.22+10x-4+x+11=180 | | 0.5x²+1.5x-2=0 | | (6x-1)(11x+4)=75 | | 19d-18d=10 | | x2+10x+5=0 | | 7w-2w=15 |